Related Publications
Biocompatibility and bone regeneration by shape memory polymer scaffolds
Gasson, S.B.; Dobson, L.K.; Pfau-Cloud, M.R.; Beltran, F.O.; Pool, R.R.; Gregory, C.A., Grunlan, M.A.; Saunders, W.B. “Biocompatibility and bone regeneration by shape memory polymer scaffolds,” J. Biomed. Mater. Res. Part A. 2025, 113, e37806.
[
DOI]
Shape memory polymer scaffolds – Utility for in vitro osteogenesis of canine multipotent stromal cells
Gasson, S.B.; Dobson, L.K.; Pfau-Cloud, M.R.; Beltran, F.O.; Gregory, C.A., Grunlan, M.A.; Saunders, W.B. “Shape memory polymer scaffolds – Utility for in vitro osteogenesis of canine multipotent stromal cells,” J. Biomed. Mater. Res. Part B, 2024, 112, e35503.
[
DOI]
An in vivo assessment of different mesenchymal stromal cell tissue types and their differentiation state on a shape memory polymer scaffold for bone regeneration
Guda, T.; Stukel Shahn, J.M.; Lundquist, B.D.; Macaitis, J.M.; Lozano Pérez, M.; Pfau-Cloud, M.R.; Beltran, F.O.; Schmitt, C.W.; Corbin, E.M.; Grunlan, M.A.; Lien, W.; Wang, H.-C.; Burdette, A.J. “An in vivo assessment of different mesenchymal stromal cell tissue types and their differentiation state on a shape memory polymer scaffold for bone regeneration,” J. Biomed. Mater. Res. Part B, 2024, 112, e35516.
[
DOI]
Direct ink writing of porous shape memory polyesters
Raghuvaran, G.; Nischke, B.M.; Roberts, C.T.; Grunlan, M.A.; Pentzer, E.B. “Direct ink writing of porous shape memory polyesters,” Mater. Adv. 2024, 5, 5763-5771.
[
DOI]
Star-PCL shape memory polymer (SMP) scaffolds with tunable transition temperatures for enhanced utility
Roberts, C.T.; Beck, S.K.; Prejean, C.M.; Graul, L.M.; Maitland, D.J.; Grunlan, M.A. “Star-PCL shape memory polymer (SMP) scaffolds with tunable transition temperatures for enhanced utility,” J. Mater. Chem. B. 2024, 12, 3694-3702.
[
DOI]
Trends in bioactivity: Inducing and detecting mineralization of regenerative polymeric scaffolds
Nitschke, B.M.; Beltran, F.O.; Hahn, M.S.; Grunlan, M.A. “Trends in bioactivity: Inducing and detecting mineralization of regenerative polymeric scaffolds,” J. Mater. Chem. B. 2024, 12, 2720-2736.
[
DOI]
High-throughput screening of thiol–ene click chemistries for bone adhesive polymers
Ganabady, K.; Contessi Negrini, N.; Scherba, J.C.; Nitschke, B.M.; Alexander, M.R.; Vining, K.H.; Grunlan, M.A.; Mooney, D.J.; Celiz, A.D. “High throughput screening of thiol-ene click chemistries for bone adhesive polymers,” ACS Appl. Mater. & Interfaces, 2023, 15, 44.
[
DOI]
Enhanced degradation and bioactivity in polysiloxane-based shape memory polymer (SMP) scaffolds
Beltran, F.O.; Arabiyat, A.S.; Culibrk, R.A.; Yeisley, D.J.; Houk, C.J.; Hicks, A.J.; Negron-Hernandez, J.; Nitschke, B.M.; Hahn, M.S.; Grunlan, M.A. “Enhanced degradation and bioactivity in polysiloxane-based shape memory polymer (SMP) scaffolds,” Polymer, 2023, 284, 126291
[
DOI]
Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold
Stukel Shah, J.M.; Lundquist, B.; Macaitis, J.; Pfau-Cloud, M.R.; Beltran, F.O.; Grunlan, M.A.; Lien, W.; Wang, H.-C.; Burdette, A.J. “Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold,” J. Biomed. Maters. Res. Part B, 2022, 110, 2063-2074
[
DOI]
PoreScript: Semi-automated pore size algorithm for scaffold characterization
Jenkins, D.; Salhadar, K.; Ashby, G.; Misha, A.; Cheshire, J.; Beltran, F.; Grunlan, M.A.; Andrieux, S.; Stubenrauch, C.; Cosgriff-Hernandez, E. “PoreScript: Semi-automated pore size algorithm for scaffold characterization,” Bioactive Mater., 2022, 13, 1-8
[
DOI]
Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds
Houk, C.J.; Beltran, F.O.; Grunlan, M.A. “Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds,” Polym. Degrad. Stability, 2021, 194, 109763
[
DOI]
Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models
Lawson, Z.T.; Han, J.; Saunders, W.B.; Grunlan, M.A.; Moreno, M.R.; Robbins, A.B. “Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models,” MethodsX, 2021, 8, 101541
[
DOI]
Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds
Arabiyat, A.A.; Pfau, M.R.; Grunlan, M.A.; Hahn, M.S.“Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds,” J. Biomed. Mater. Res. Part A, 2021, 21, 2334-2345
[
DOI]
Evaluation of self-fitting, shape memory polymer scaffolds in a rabbit calvarial defect model
Pfau, M.R.; Beltran, F.O.; Woodard, L.N.; Saunders, W.B.; Dobson, L.K.; Gasson, S.B.; Moreno, M.R.; Robbins, A.B.; Lawson, Z.T.; Grunlan, M.A. “Evaluation of self-fitting, shape memory polymer scaffolds in a rabbit calvarial defect model,” Acta Biomaterialia, 2021, 136, 233-242.
[
DOI]
Smart scaffolds: Shape memory polymers (SMPs) in tissue engineering
Pfau, M.A.; Grunlan, M.A. “Smart scaffolds: Shape memory polymers (SMPs) in tissue engineering,” J. Mater. Chem. B, 2021, 9, 4287-4297
[
DOI]