Related Publications
Enhanced osteogenic potential of phosphonated-siloxane hydrogel scaffolds
Frassica, M.T.; Jones, S.K.; Suriboot, J.; Arabiyat, A.; Ramirez, E.; Hahn, M.S.; Grunlan, M.A. “Enhanced osteogenic potential of phosphonated-siloxane hydrogel scaffolds,” Biomacromolecules, 2020, 21, 5189-5199
[
DOI]
Spatially controlled templated hydrogels for orthopedic interface regeneration
Frassica, M.T.; Demott, C.J.; Ramirez, E.M.; Grunlan, M.A. “Spatially controlled templated hydrogels for orthopedic interface regeneration,” ACS Macro Lett. 2020, 9, 1740-1744
[
DOI]
Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair
Frassica, M.T.; Grunlan, M.A. “Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair,” ACS Biomater. Sci. Eng., 2020, 6, 4324-4336
[
DOI]
Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity
Frassica, M.T.; Jones, S.K.; Diaz-Rodriguez, P.; Hahn, M.S.; Grunlan, M.A. “Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity,” Acta Biomaterialia, 2019, 99, 100-109
[
DOI]
Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells
Diaz-Rodriguez, P.; Erndt-Marino, J.; Munoz-Pinto, D.J.; Samavedi, S.; Beardon, R.; Grunlan, M.A.; Saunders, W.; Hahn, M.S. “Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells,” J. Biomed. Mater. Res. Part B: Appl. Biomat., 2019, 107B, 2019-2029
[
DOI]
A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds
Gharat, T.P.; Diaz-Rodriguez, P.; Erndt-Marino, J.D.; Jimenez Vergara, A.C.; Munoz Pinto, D.J.; Beardon, R.N.; Huggins, S.S.; Grunlan, M.; Saunders, W.B.; Hahn, M.S. “A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds,” J. Biomed. Mater. Res. Part A, 2018, 106, 2382-2393
[
DOI]
Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds
Gacasan, E.G; Sehnert, R.M.; Ehrhardt, D.A.; Grunlan, M.A.. “Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds,” Macromol. Mater. Eng., 2017, 302, 16000512
[
DOI]
Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering
Bailey, B.M.; Nail, L.N.; Grunlan, M.A. “Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering,” Acta Biomaterialia, 2013, 9, 8254-8261
[
DOI]
PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds
Bailey, B.M.; Fei, R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. “PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds,” Acta Biomaterialia, 2012, 8, 4324-4333
[
DOI]
An approach for assessing hydrogel hydrophobicity
Munoz-Pinto, D.; Grigoryan, B.; Long, J.; Grunlan, M.A.; Hahn, M.S. “An approach for assessing hydrogel hydrophobicity,” J. Biomed. Mater. Res. Part A, 2012, 100, 2855-2860
[
DOI]
Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels
Munoz-Pinto, D.; Jimenez-Vergara, A.; Hou, Y.; Hayenga, H.N., Grunlan, M.A.; Hahn, M.S. “Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels,” Tissue Eng. Part A 2012, 18, 1710-1719
[
DOI]
Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)
Bailey, B.M.; Hui, V.; Fei, R., Grunlan, M.A. “Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS),” J. Mater. Chem. 2011, 21, 18776-18782
[
DOI]
Inorganic-organic hybrid scaffolds for osteochondral regeneration
Munoz-Pinto, D.J.; McMahon, R.E.; Kanzelberger, M.A.; Jimenez-Vergara, A.C.; Grunlan, M.A.; Hahn, M.S. “Inorganic-organic hybrid scaffolds for osteochondral regeneration,” J. Biomed. Mater. Res. Part A, 2010, 94, 112-121
[
DOI]
Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds
Hou, Y.; Schoener, C.A.; Regan, K.R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. “Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds,” Biomacromolecules 2010, 11, 648-656
[
DOI]